Republic of Iraq

Ministry of Higher Education and Seintific Reserch University of AL-Anbar

College of Engineering

Electrical Engineering Department

By

Hatem Fahd Al-Duliamy

2018-2019

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT Electronic I Third Class

Chapter 12

Chapter 12_Power Amplifiers

Hatem Fahd Al-Duliamy

2018-2019

Robert Boylestad *Digital Electronics*

Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

PEARSON

Chapter 12 Power Amplifiers

Definitions

In small-signal amplifiers the main factors are:

- Amplification
- Linearity
- Gain

Since large-signal, or power, amplifiers handle relatively large voltage signals and current levels, the main factors are:

- Efficiency
- Maximum power capability
- Impedance matching to the output device

Amplifier Types

Class A

The amplifier conducts through the full 360° of the input. The Q-point is set near the middle of the load line.

Class B

The amplifier conducts through 180° of the input. The Q-point is set at the cutoff point.

Class AB

This is a compromise between the class A and B amplifiers. The amplifier conducts somewhere between 180° and 360°. The Q-point is located between the mid-point and cutoff.

more...

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Amplifier Types

Class C

The amplifier conducts less than 180 of the input. The Q-point is located below the cutoff level.

Class D

This is an amplifier that is biased especially for digital signals.

Class A Amplifier

Class B Amplifier

Class AB Amplifier

This amplifier is a compromise between the class A and class B amplifier—the Q-point is above that of the Class B but below the class A.

The output conducts between 180° and 360° of the AC input signal.

PEARSON

Q-point

VCE

lC

Amplifier Efficiency

Comparison of Amplifier Classes					
	A		Class B	C*	D
Operating cycle	360°	180° to 360°	180°	Less than 180°	Pulse operation
Power efficiency	25% to 50%	Between 25% (50%) and 78.5%	78.5%		Typically over 90%

*Class C is usually not used for delivering large amounts of power, thus the efficiency is not given here.

Efficiency refers to the ratio of output to input power. The lower the amount of conduction of the amplifier the higher the efficiency.

Series-Fed Class A Amplifier

This is similar to the small-signal amplifier except that it will handle higher voltages. The transistor used is a highpower transistor.

Series-Fed Class A Amplifier

EARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Series-Fed Class A Amplifier

Input Power

The power into the amplifier is from the DC supply. With no input signal, the DC current drawn is the collector bias current, I_{CO} .

Transformer-Coupled Class A Amplifier

This circuit uses a transformer to couple to the load. This improves the efficiency of the Class A to 50%.

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky $+V_{CC}$

 R_{R}

 $N_1: N_2$

 R_L

 $V_2 = V_o$

Transformer Action

A transformer improves the efficiency because it is able to transform the voltage, current, and impedance

Transformer-Coupled Class A **Amplifier**

DC Load Line

As in all class A amplifiers the Q-point is established close to the midpoint of the DC load line.

AC Load Line

The saturation point (I_{Cmax}) is at V_{cc}/R'_L and the cutoff point is at V_2 (the secondary voltage of the transformer). This increases the maximum output swing because the minimum and maximum values of I_C and V_{CE} are spread further apart.

Transformer-Coupled Class A Amplifier

Signal Swing and Output AC Power

The voltage swing:

 $V_{CE(p-p)} = V_{CE \max} - V_{CE \min}$

The current swing:

 $I_{C \max} - I_{C \min}$

The AC power:

$$P_{o(ac)} = \frac{(V_{CEmax} - V_{CEmin})(I_{Cmax} - I_{Cmin})}{8}$$

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Transformer-Coupled Class A Amplifier Efficiency

Power input from the DC source:

 $P_{i(dc)} = V_{CC}I_{CQ}$

Power dissipated as heat across the transistor:

$$P_Q = P_{i(dc)} - P_{o(ac)}$$

Note: The larger the input and output signal, the lower the heat dissipation.

Maximum efficiency:

$$\%\eta = 50 \left(\frac{V_{CEmax} - V_{CEmin}}{V_{CEmax} + V_{CEmin}} \right)^{2}$$

Note: The larger V_{CEmax} and smaller V_{CEmin} , the closer the efficiency approaches the theoretical maximum of 50%.

Class B Amplifier

In class B, the transistor is biased just off. The AC signal turns the transistor on.

The transistor only conducts when it is turned on by onehalf of the AC cycle.

In order to get a full AC cycle out of a class B amplifier, you need two transistors:

- An *npn* transistor that provides the negative half of the AC cycle
- A *pnp* transistor that provides the positive half.

One-half circuit

> One-half circuit

PEARSON Electric Robo

Load

Class B Amplifier: Efficiency

The maximum efficiency of a class B is 78.5%..

 $\%\eta = \frac{P_{o(ac)}}{P_{i(dc)}} \times 100$

maximum
$$P_{o(dc)} = \frac{V_{CC}^2}{2R_L}$$

For maximum power, V_L=V_{CC}

maximum P_{i(dc)} = V_{CC} (maximum I_{dc}) = V_{CC} $\left(\frac{2V_{CC}}{\pi R_L}\right) = \frac{2V^2_{CC}}{\pi R_L}$

ARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Transformer-Coupled Push-Pull Class B Amplifier

The center-tapped transformer on the input produces opposite polarity signals to the two transistor inputs.

The center-tapped transformer on the output combines the two halves of the AC waveform together.

Class B Amplifier Push-Pull Operation

- During the positive half-cycle of the AC input, transistor Q₁ (*npn*) is conducting and Q₂ (*pnp*) is off.
- During the negative half-cycle of the AC input, transistor Q₂ (*pnp*) is conducting and Q₁ (*npn*) is off.

Each transistor produces one-half of an AC cycle. The transformer combines the two outputs to form a full AC cycle.

ARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Crossover Distortion

Quasi-Complementary Push-Pull Amplifier

Input

C,

A Darlington pair and a feedback pair combination perform the push-pull operation. This increases the output power capability.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky $+V_{CC}$

Darlington pair

Feedback pair Output

(Load)

Amplifier Distortion

If the output of an amplifier is not a complete AC sine wave, then it is distorting the output. The amplifier is non-linear.

This distortion can be analyzed using Fourier analysis. In Fourier analysis, any distorted periodic waveform can be broken down into frequency components. These components are harmonics of the fundamental frequency.

Harmonics

Harmonics are integer multiples of a fundamental frequency.

If the fundamental frequency is 5kHz:

1 st harmonic 🥂	1 x 5kHz	
2 nd harmonic	2 x 5kHz	
3 rd harmonic	3 x 5kHz	
4 th harmonic	4 x 5kHz	
etc.		

Note that the 1st and 3rd harmonics are called odd harmonics and the 2nd and 4th are called even harmonics.

Harmonic Distortion

26

Electronic Devices and Circuit Theory, 10/e EARSON Robert L. Boylestad and Louis Nashelsky

Harmonic Distortion Calculations

Harmonic distortion (D) can be calculated:

% nth harmonic distortion = %
$$D_n = \left| \frac{A_n}{A_1} \right| \times 100$$

where

 A_n is the amplitude of the fundamental frequency A_n is the amplitude of the highest harmonic

The total harmonic distortion (THD) is determined by:

% THD = $\sqrt{D_2^2 + D_3^2 + D_3^2 + \dots \times 100}$

Power Transistor Derating Curve

Power transistors dissipate a lot of power in heat. This can be destructive to the amplifier as well as to surrounding components.

Class C Amplifiers

A class C amplifier conducts for less than 180°. In order to produce a full sine wave output, the class C uses a tuned circuit (LC tank) to provide the full AC sine wave.

Class C amplifiers are used extensively in radio communications circuits.

Class D Amplifier

A class D amplifier amplifies pulses, and requires a pulsed input.

There are many circuits that can convert a sinusoidal waveform to a pulse, as well as circuits that convert a pulse to a sine wave. This circuit has applications in digital circuitry.

Republic of Iraq

Ministry of Higher Education and Seintific Reserch University of AL-Anbar

College of Engineering

Electrical Engineering Department

By

Hatem Fahd Al-Duliamy

2018-2019

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT Electronic II

Third Class

Chapter 13

Chapter 13_ Linear-Digital ICs

Hatem Fahd Al-Duliamy

2018-2019

Robert Boylestad *Digital Electronics*

Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

PEARSON

Chapter 13 Linear-Digital ICs

Linear Digital ICs

Comparators Digital/analog converters Timers Voltage-controlled oscillators Phase-locked loop circuits Interface circuits
Comparator Circuit

The operation is a basic comparison. The output swings between its maximum and minimum voltage, depending upon whether one input (V_{in}) is greater or less than the other (V_{ref}) .

The output is always a square wave where:

- The maximum high output voltage is +V_{SAT}.
- The minimum low output voltage is -V_{SAT}.

 $-V_{sat}$

Vo

 $+V_{sat}$

Noninverting Op-Amp Comparator

For a noninverting op-amp comparator:

- The output goes to +V_{SAT} when 10 kΩ
 input V_i is greater than the reference voltage.
 The output goes to -V_{SAT} when 10 kΩ
- input V_i is less than the reference voltage.

- V_{ref} in this circuit is +6V (taken from the voltage divider)
- $+V_{SAT} = +V, \text{ or } +12V$
- $-V_{SAT} = -V \text{ or } -12V$

When V_i is greater than +6V the output swings to +12V and the LED goes on. When V_i is less than +6V the output is at -12V and the LED goes off.

470 Ω

24 LED

+12 V

-12 V

Inverting Op-Amp Comparator

For an inverting op-amp comparator:

- The output goes to $-V_{SAT}$ when input V_i is greater than the reference voltage.
 - The output goes to $+V_{SAT}$ when input V_i is less than the reference voltage.

$V_i = \frac{741}{10 \text{ k}\Omega} V_i = \frac{741}{-12 \text{ V}} V_o$ $V_i = \frac{741}{-12 \text{ V}} V_o$

+12 V

Example:

- V_{ref} in this circuit is +6V (taken from the voltage divider)
- $+V_{SAT} = +V, \text{ or } +12V$
- $-V_{SAT} = -V \text{ or } -12V$

When V_i is greater than +6V the output swings to -12V and the LED goes off. When V_i is less than +6V the output is at +12V and the LED goes on.

Comparator ICs

Advantages:

- Faster switching
- Built-in noise immunity
- Outputs capable of directly driving loads

Digital-Analog Converters

Types:

- Digital-to-analog converters (ADCs)
- Analog-to-digital converters (DACs)

EARSON Electronic L

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Analog-to-Digital Converters

Types:

- Dual Slope Conversion
- Ladder Network Conversion

Analog-to-Digital Conversion Dual Slope Conversion

The analog input voltage is applied to an integrator or ramp-generator circuit.

The digital output is obtained from a digital counter that is operated during both positive and negative slope (ramp) intervals of the integrator.

Dual Slope Conversion

Rising Slope

For a fixed interval the analog voltage is applied to the integrator. The integrator output rises to some positive level. This positive voltage is applied to a comparator. At the end of the fixed interval, the counter is reset to 0. An electronic switch connects the integrator input to a fixed input or reference voltage.

Falling Slope

The integrator output decreases at a fixed rate. The counter advances during this time. When the integrator output (connected to the comparator input) falls below the reference level of the comparator, control logic stops the counter. The digital counter output is the digital conversion of the analog input.

Ladder Network Conversion

A digital counter advances from zero while a ladder network converts the digital count to a staircase analog voltage.

When the staircase voltage into the comparator equals the analog input voltage, the counter stops.

The last count is the digital conversion of the analog input.

Resolution of Analog-to-Digital Converters

ref

The resolution depends on the amount of voltage per step (digital bit):

where n is the number of digital bits

Example: A 12-bit ADC with a 10V reference level has the following resolution:

$$\frac{V_{ref}}{2^n} = \frac{10V}{2^{12}} = 2.4mV$$

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Analog-to-Digital Conversion Time

The conversion time depends on the clock frequency of the counter.

 $T_{conv} = \frac{2^n}{f}$

where

T_{conv} = conversion time (seconds) n = number of binary bits f = clock frequency for the counter

Example: A 12bit ADC with a 1MHz clock has a maximum conversion time.

$$2^{12} \left(\frac{1}{1 \text{MHz}}\right) = 4.1 \text{ms}$$

555 Timer Circuit

The 555 Timer is an example of a versatile Timer IC.

Astable Operation

The timer output is a repetitive square wave. The output frequency can be calculated as shown here.

555 Timer Circuit

Monostable Operation

The timer output is a one shot pulse. When an input is received it triggers a one shot pulse. The time for which the output remains high can be calculated as shown.

Voltage-Controlled Oscillator

The oscillator output is a variable frequency square wave or triangular wave. The output frequency depends on the modulation input voltage (V_c).

566 Voltage-Controlled Oscillator

The output frequency can be calculated as shown in the graph.

Note that the formula also indicates other circuit parameters that affect the output frequency.

Phase-Locked Loop

The input signal is a frequency and the output signal is a voltage representing the difference in frequency between the input and the internal VCO.

Basic Operation of the Phase-Locked Loop

Phase-Locked Loop: Lock Mode

The input frequency and the internal VCO output frequency are applied to the phase comparator.

If they are the same, the phase comparator output voltage indicates no error.

This no-error voltage is filtered and amplified before it is made available to the output.

V, At VCO center frequency, f. 0° 90° Output Input Phase Low-pass Amplifier signal signal f: detector $f_i + f_o$ filter $f_i - f_o$ V_o VCO fo V_d VCO

The no-error voltage is also applied to the internal VCO input to maintain the VCO's output frequency.

Phase-Locked Loop: Tracking Mode

If the input frequency *does not* equal the VCO frequency then the phase comparator outputs an error voltage.

This error voltage is filtered and amplified and made available to the output.

The error voltage is also applied to the VCO input. This causes the VCO to change output frequency.

At VCO center frequency, f_{o} 90° Phase Output Input Low-pass Amplifier signal signal detector $f_i + f_a$ filter $f_i - f_o$ VCO V_d VCO

This looping continues until the VCO has adjusted to the new input frequency and they are equal again.

Phase-Locked Loop: Out-of-Lock Mode

If the input frequency *does not* equal the VCO frequency and the resulting error voltage does not cause the VCO to catch up to the input frequency, then the system is out of lock. The VCO will never equal the input frequency.

Phase-Locked Loop: Frequency Ranges

Lock Range—The range of input frequencies for which the VCO will track.

Capture Range —A narrow range of frequencies into which the input frequency must fall before the VCO can track. If the input frequency falls out of the lock range it must first enter into the capture range.

Phase-Locked Loop

Applications:

- FM demodulator
- Frequency Synthesizer
 - FSK decoder

Interface Circuitry

Interface circuitry:

- Driving loads
- Producing output signals at proper voltage or current levels
- Impedance matching
- Strobing or timing signals

Interface Circuitry: Dual Line Drivers

The input is TTL digital logic signal levels.

The output is capable of driving TTL or CMOS devise circuits.

RS-232-to-TTL Converter

The input is RS-232 electronic industry standard for serial communications.

The output will drive TTL circuitry.

Republic of Iraq

Ministry of Higher Education and Seintific Reserch University of AL-Anbar

College of Engineering

Electrical Engineering Department

By

Hatem Fahd Al-Duliamy

2018-2019

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT Electronic II Third Class

Multivibrator

Hatem Fahd Al-Duliamy

2018-2019

Robert Boylestad *Digital Electronics*

Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Multivibrators

- A multivibrator is used to implement simple **two-state systems** such as oscillators, timers and flip-flops.
- Three types:
 - Astable neither state is stable.
 Applications: oscillator, etc.
 - Monostable one of the states is stable, but the other is not;
 Applications: timer, etc.
 - Bistable it remains in either state indefinitely.
 Applications: flip-flop, etc.

Reference: http://en.wikipedia.org/wiki/Multivibrator

Astable Multivibrator

- Consists of two amplifying devices cross-coupled by resistors and capacitors.
- Typically, $R_2 = R_3$, $R_1 = R_4$, $C_1 = C_2$ and $R_2 >> R_1$.
- The circuit has two states
 - State 1: V_{C1} LOW, V_{C1} HIGH, Q_1 ON (saturation) and Q_2 OFF.
 - State 2: V_{C1} HIGH, V_{C2} LOW, Q_1 OFF and Q_2 ON (saturation).
- It continuously oscillates from one state to the other.

State 1:

- V_{B1} charges up through R_3 from below ground towards V_{CC} .
- When V_{B1} reaches V_{ON} (of $V_{BE,} \approx 1V$), Q_1 turns on and pulls V_{C1} from V_{CC} to $V_{CESat} \approx 0V$.
- Due to forward-bias of the BE junction of Q_1 , V_{B1} remains at 1V.

State 1 (cont'd):

• As C₁'s voltage cannot change instantaneously, V_{B2} drops by V_{CC.}

State 1 (cont'd):

- Q_2 turns off and V_{C2} charges up through R_4 to V_{CC} (speed set by the time constant R_4C_2).
- V_{B2} charges up through R₂ towards V_{CC} (speed set by R₂C₁, which is slower than the charging up speed of V_{C2}).

State 2:

- When V_{B2} reaches V_{ON} , Q_2 turns on and pulls V_{C2} from V_{CC} to 0V.
- V_{B2} remains at V_{ON}.

State 2 (cont'd):

As C₂'s voltage cannot change instantaneously, V_{B1} drops by V_{CC.}

State 2 (cont'd):

- Q_1 turns off and V_{C1} charges up through R_1 to V_{CC} , at a rate set by R_1C_1 .
- V_{B2} charges up through R₃ towards V_{CC}, at a rate set by R₃C₂, which is slower.

Basic Mode of Operation

Back to state 1:

 When V_{B1} reaches Von, the circuit enters state 1 again, and the process repeats.

Initial Power-Up

- When the circuit is first powered up, neither transistor is ON.
- Parasitic capacitors between B and E of Q_1 and Q_2 are charged up towards V_{CC} through R_2 and R_3 . Both V_{B1} and V_{B2} rise.
- Inevitable slight asymmetries will mean that one of the transistors is first to switch on. This will quickly put the circuit into one of the above states, and oscillation will ensue.

Multivibrator Frequency

Supply Voltage Limit

- When V_{B1} is negative, BE junction of Q_1 is reverse-biased.
- Suppose the breakdown voltage of this junction is V_{break} (positive). then to avoid breakdown,

$$V_{_{ON}} - V_{_{CC}} > - V_{_{Break}} \implies V_{_{CC}} < V_{_{ON}} + V_{_{Break}}$$

Mono-stable Multivibrator

- Capacitive path between $V_{\rm C2}$ and $V_{\rm B1}$ removed.
- Stable for one state (state 2 here)
 - Q₁ OFF and Q₂ ON
 - V_{C1} High, V_{C2} Low

 When V_{B2} is momentarily pulled to ground by an external signal

- V_{C2} rises to V_{CC}
- Q₁ turns on
- V_{C1} pulled down to 0V
- Enter state 1 temporarily
- When the external signal goes high
 - V_{B2} charges up to V_{CC} through R₂
 - After a certain time T, $V_{B2}=V_{ON}$, Q_2 turns on
 - V_{C2} pulled to 0V, Q_1 turns off
 - Enters state 2 and remains there
- Can be used as a timer

Bi-stable Multivibrator

- Circuit remains in state 1 until Set is low
- Behave as an RS flip-flop

Republic of Iraq

Ministry of Higher Education and Seintific Reserch University of AL-Anbar

College of Engineering

Electrical Engineering Department

By

Hatem Fahd Al-Duliamy

2018-2019

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT Electronic II Third Class

Chapter 14

Chapter 14_ Feedback and Oscillator Circuits

Hatem Fahd Al-Duliamy

2018-2019

Robert Boylestad *Digital Electronics*

Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

PEARSON

BOYLESTAD

Chapter 14 Feedback and Oscillator Circuits

Feedback Concepts

The effects of negative feedback on an amplifier:

Disadvantage

• Lower gain

Advantages

- Higher input impedance
- More stable gain
- Improved frequency response
- Lower output impedance
- Reduced noise
- More linear operation

Feedback amplifier

Feedback Connection Types

- Voltage-series feedback
- Voltage-shunt feedback
- Current-series feedback
- Current-shunt feedback

Voltage-Series Feedback

Voltage-Shunt Feedback

For a voltage-shunt feedback amplifier, the output voltage is fed back in parallel with the input.

Current-Series Feedback

For a current-series feedback amplifier, a portion of the output current is fed back in series with the input.

To determine the feedback gain:

$$A_{f} = \frac{I_{o}}{V_{s}} = \frac{A}{1+\beta A} = \frac{-h_{fe}/h_{ie}}{1+(-R_{E})\left(\frac{-h_{fe}}{h_{ie}+R_{E}}\right)} \cong \frac{-h_{fe}}{h_{ie}+h_{fe}R_{E}}$$

ARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

 $+V_{CC}$

 R_C

 R_E

 V_o

 C_1

Vr

Current-Shunt Feedback

For a current-shunt feedback amplifier, a portion of the output current is directed back in parallel with the input.

Summary of Feedback Effects

Sun	nmary of Ga	in, Feedback,	and Gain with F	eedback		
Shunt		Voltage-Series	Voltage-Shunt	Current-Series	Current	
Gain without feedbac	k A	$\frac{V_o}{V_i}$	$\frac{V_o}{I_i}$		$\frac{I_o}{I_i}$	
Feedback	b	$\frac{V_f}{V_o}$		$\frac{V_f}{I_o}$	$rac{I_f}{I_o}$	
	A_f	$\frac{V_o}{V_s}$	$\frac{V_o}{I_s}$	$\frac{I_o}{V_s}$	$\frac{I_o}{I_s}$	
	2	Effect of Fee	edback Connectio	on on Input and Ou	tput Impedan	ce
	Voltage-Series $Z_{if} Z_i \ (1+ \beta A)$ (increased) $Z_{of} \frac{Z_o}{1+\beta A}$ (decreased)		Current-Series	Current-Series Voltage-Shunt Z_i (1+ βA) $\frac{Z_i}{1 + \beta A}$ (increased) (decreased)		Current-Shunt
			Z_i (1+ βA) (increased)			$\frac{Z_i}{1 + \beta A}$ (decreased)
			Z_o (1+ βA)	$\frac{Z_o}{1 + \beta_A}$	A ed)	Z_o (1+ βA) (increased)

Frequency Distortion with Feedback

- If the feedback network is purely resistive, then the gain with feedback will be less dependent on frequency variations. In some cases the resistive feedback removes all dependence on frequency variations.
- If the feedback includes frequency dependent components (capacitors and inductors), then the frequency response of the amplifier will be affected.

Noise and Nonlinear Distortion

- The feedback network reduces noise by cancellation. The phase of the feedback signal is often opposite the phase of the input signal.
- Nonlinear distortion is also reduced simply because the gain is reduced. The amplifier is operating in midrange and not at the extremes.

Bandwidth with Feedback

Feedback increases the bandwidth of an amplifier.

Gain Stability with Feedback

Gain calculations with feedback are often based on external resistive elements in the circuit. By removing gain calculations from internal variations of β and g_m , the gain becomes more stable.

Phase and Frequency Considerations

At higher frequencies the feedback signal may no longer be out of phase with the input. The feedback is thus positive and the amplifier, itself, becomes unstable and begins to

Oscillator Operation

The feedback signal must be positive.

If the feedback signal is not positive or the gain is less than one, the oscillations dampens out. The overall gain must equal one (unity gain).

If the overall gain is greater than one, the oscillator eventually saturates.

Types of Oscillator Circuits

Phase-shift oscillator Wien bridge oscillator Tuned oscillator circuits Crystal oscillators Unijunction oscillator

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Phase-Shift Oscillator

The amplifier must supply enough gain to compensate for losses. The overall gain must be unity.

The RC networks provide the necessary phase shift for a positive feedback.

The values of the RC components also determine the frequency of oscillation:

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

Feedback network

more...

Phase-Shift Oscillator

Wien Bridge Oscillator

The amplifier must supply enough gain to compensate for losses. The overall gain must be unity.

- The feedback resistors are R₃ and R₄.
- The phase-shift components are R₁, C₁ and R₂, C₂.

Tuned Oscillator Circuits

Tuned oscillators use a parallel LC resonant circuit (LC tank) to provide the oscillations.

There are two common types:

Colpitts—The resonant circuit is an inductor and two capacitors.

Hartley—The resonant circuit is a tapped inductor or two inductors and one capacitor.

Colpitts Oscillator Circuit

Hartley Oscillator Circuit

Crystal Oscillators

The crystal appears as a resonant circuit.

The crystal has two resonant frequencies:

Series resonant condition

- RLC determine the resonant frequency
- The crystal has a low impedance

Parallel resonant condition

- RL and C_M determine the resonant frequency
- The crystal has a high impedance

The series and parallel resonant frequencies are very close, within 1% of each other.

Series Resonant Crystal Oscillator

Parallel Resonant Crystal Oscillator

Unijunction Oscillator

EARSON Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Unijunction Oscillator Waveforms

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. **Republic of Iraq**

Ministry of Higher Education and Seintific Reserch University of AL-Anbar

College of Engineering

Electrical Engineering Department

By

Hatem Fahd Al-Duliamy

2018-2019

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT Electronic II Third Class

Chapter 15

(Chapter 15_ Power Supplies (Voltage Regulators

Hatem Fahd Al-Duliamy

2018-2019

Robert Boylestad *Digital Electronics*

Copyright ©2002 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

PEARSON

BOYLESTAD

Chapter 15 Power Supplies (Voltage Regulators)

Power Supply Diagram

Filter Circuits

- The output from the rectifier section is a pulsating DC.
- The filter circuit reduces the peak-to-peak pulses to a small ripple voltage.

Ripple Factor

Rectifier Ripple Factor

Half-Wave	Full-Wave
DC output:	DC output:
$V_{dc} = 0.318V_m$	$V_{dc} = 0.636V_{m}$
AC ripple output:	AC ripple output:
$\mathbf{V}_{\mathbf{r}(\mathbf{rms})} = \mathbf{0.385V_m}$	$V_{r(rms)} = 0.308 V_m$
Ripple factor:	Ripple factor:
$ n r = rac{V_{r(rms)}}{V_{dc}} imes 100 $	$\%\mathbf{r} = \frac{\mathbf{V}_{\mathbf{r}(\mathbf{rms})}}{\mathbf{V}_{\mathbf{dc}}} \times 100$
$=\frac{0.385V_{\rm m}}{0.318V_{\rm m}}\times100=121\%$	$= \frac{0.308_{\rm Vm}}{0.636_{\rm Vm}} \times 100 = 48\%$

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Types of Filter Circuits

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Capacitor Filter

Diode Ratings with Capacitor Filter

The size of the capacitor increases the current drawn through the diodes the larger the capacitance, the greater the amount of current.

Peak Current vs. Capacitance:

where

- C = capacitance
- V = change in capacitor voltage during charge/discharge
- t = the charge/discharge time

RC Filter Circuit

PEARSON

Voltage Regulation Circuits

There are two common types of circuitry for voltage regulation:

- Discrete Transistors
- IC's

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Discrete-Transistor Regulators

Series voltage regulator Current-limiting circuit Shunt voltage regulator

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Series Voltage Regulator Circuit

The series element controls the amount of the input voltage that gets to the output.

If the output voltage increases (or decreases), the comparator circuit provides a control signal to cause the series control element to decrease (or increase) the amount of the output voltage.

PEARSON

Series Voltage Regulator Circuit

voltage)

- **R**₁ and **R**₂ act as the sampling circuit
- Zener provides the reference voltage
- Q₂ controls the base current to Q₁
- Q₁ maintains the constant output voltage

- 1. The voltage at V₂ and V_{BE} of Q₂ increases
- **2.** The conduction of Q_2 increases
- **3.** The conduction of Q_1 decreases
- 4. The output voltage decreases

When the output decreases:

 Q_1

 Q_2

1. The voltage at V₂ and V_{BE} of Q₂ decreases

(regulated

voltage)

 $\sum R_L$

- **2.** The conduction of Q_2 decreases
- **3.** The conduction of Q_1 increases
- 4. The output voltage increases

Series Voltage Regulator Circuit

Current-Limiting Circuit

When I_L increases:

- The voltage across R_{SC} increases
- The increasing voltage across R_{SC} drives Q_2 on
- Conduction of Q₂ reduces current for Q₁ and the load

Shunt Voltage Regulator Circuit

The load voltage is sampled and fed back to a comparator circuit. If the load voltage is too high, control circuitry shunts more current away from the load.

Shunt Voltage Regulator Circuit

When the output voltage increases:

- The Zener current increases
- The conduction of Q₂ increases
- The voltage drop at R_s increases
- The output voltage decreases

When the output voltage decreases:

- The Zener current decreases
- The conduction of Q₂ decreases
- The voltage drop at R_s decreases
- The output voltage increases

Shunt Voltage Regulator Circuit

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

IC Voltage Regulators

Regulator ICs contain:

- Comparator circuit
- Reference voltage
- Control circuitry
- Overload protection

Types of three-terminal IC voltage regulators

- Fixed positive voltage regulator
- Fixed negative voltage regulator
- Adjustable voltage regulator

Three-Terminal Voltage Regulators

The specifications for this IC indicate:

- The range of input voltages that can be regulated for a specific range of output voltage and load current
- Load regulation—variation in output voltage with variations in load current
- Line regulation—variation in output voltage with variations in input voltage

Fixed Positive Voltage Regulator

These ICs provide a fixed positive output voltage.

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Fixed Negative Voltage Regulator

These ICs output a fixed negative output voltage.

PEARSON

Adjustable Voltage Regulator

These regulators have adjustable output voltages.

The output voltage is commonly selected using a potentiometer.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Practical Power Supplies

DC supply (linear power supplies) Chopper supply (switching power supplies) TV horizontal high voltage supply Battery chargers

